

Measured Sea Level Rise vs Beach Erosion

Bathtub Beach/Sailfish Point, FL

Kevin Bodge, PE, PhD **Steve Howard**, PE

Foth Infrastructure & Environment, LLC

February 5, 2025

Bathtub Reef Beach Park / Sailfish Point

Martin County, Florida

Bathtub Beach Park / Sailfish Point,

Overview

- Renourishes 3500 to 4500 ft of shoreline, 2 to 3 years.
- 150,000 to 250,000 cy/event

Bathtub Beach Park / Sailfish Point,

Overview

 Renourishes 3500 to 4500 ft of shoreline, 2 to 3 years.

150,000 to 250,000 cy/event

Six borrow areas

2010: 65,000 cy

2016: 320,000 cy

o **2017-18:** 232,000 cy

o **2021**: 201,000 cy

o **2024:** 255,000 cy

Bathtub Beach Park / Sailfish Point,

Shallow, shoreparallel reef, 8000-ft long

Bathtub Reef Beach Park: 2009

Bathtub Reef Beach Park: 2019

The shallow nearshore reef magnifies the effect of Sea Level Rise. 2016 Bathymetric Survey

Waves passing over Reef...

Waves passing over Reef....increase water level between Beach & Reef.

....and waves are transmitted over the Reef – increasing the energy between the Beach & Reef ...

... and the water & wave run-up return flow is blocked by the reef.

Surf water can't flow out, it can only flow south.

Increased sea level:

More water & waves pass over Reef = More water & energy trapped between Beach & Reef

South flow of excess water *increases*

Southward flow of water & energy between Beach & Reef

Southward flow of water & energy between Beach & Reef

Dec 2020 photo

Wave Transmission Over Submerged Reef

Model Testing of Wave Transmission Past Low-Crested Breakwaters Davies & Kriebel, 1992

Freeboard Above Run-Up Elev - Incident Wave Ht

Wave Transmission Over Submerged Reef

Wave engine dissination wave initial shape of past zone: $\mathcal{D} = -1/h \ d/dx$ (EoQ-C) rested Breakwaters

Davies & Kriebel, 1992

 $H_t = 3.6$ ' to 2.2' at mid-tide ($K_t = 0.6$ to 0.75)

With Sea Level Rise of 0.6 feet, transmitted wave height increases by +5.3% to +8%.

But, wave energy dissipation \mathcal{D} increases by H^{5/2} = +14% to +21%.

Hence, surf zone volume (between Beach & Reef) must increase by 14% to 21% greater depth or width to absorb the increased wave energy.

And that does not account for increased water level & currents (or that the natural reef is wide).

Measured Sea Level Rise vs Beach Erosion

Bathtub Beach/Sailfish Point, FL

Kevin Bodge, PE, PhD **Steve Howard,** PE

Foth Infrastructure & Environment, LLC

February 5, 2025